CTBC: Contact-Triggered Blind Climbing for Wheeled Bipedal Robots
with Instruction Learning and Reinforcement Learning
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Abstract—1In recent years, wheeled bipedal robots have
gained increasing attention due to their advantages in mobility,
such as high-speed locomotion on flat terrain. However, their
performance on complex environments (e.g., staircases) remains
inferior to that of traditional legged robots. To overcome
this limitation, we propose a general contact-triggered blind
climbing (CTBC) framework for wheeled bipedal robots. Upon
detecting wheel-obstacle contact, the robot triggers a leg-
lifting motion to overcome the obstacle. By leveraging a
strongly-guided feedforward trajectory, our method enables
the robot to rapidly acquire agile leg-lifting skills, signifi-
cantly enhancing its capability to traverse unstructured ter-
rains. The approach has been experimentally validated and
successfully deployed on LimX Dynamics’ wheeled bipedal
robot, Tronl. Real-world tests demonstrate that Tronl can
reliably climb obstacles well beyond its wheel radius us-
ing only proprioceptive feedback. Project page: https://
ctbc-for-wheeled-bipedal-robots.github.io/

I. INTRODUCTION

Traditional legged robots have demonstrated remarkable
agility and adaptability on complex terrain, yet their loco-
motion efficiency and speed remain comparatively low [1],
making it difficult to satisfy the demands of rapid mobility.
Wheeled-legged robots, benefiting from their high energy
efficiency over long distances and superior travel speed [2],
have been extensively studied and deployed across various
domains. Nevertheless, when confronted with challenging
environments such as staircases or uneven surfaces, the in-
herent limitations of wheeled robots become evident, as they
lack the flexibility required to surmount obstacles effectively.

For wheeled-legged robots, tire dimensions exert a de-
cisive influence on the feasibility of stair-climbing. Larger
wheels confer a clear advantage; for instance, Simon
Chamorro et al. [3] demonstrated that the Ascento robot can
ascend 15 cm stairs with wheels of 25 cm radius. In contrast,
the wheels on our Tronl wheeled-biped robot have a radius
of only 12.7 cm, substantially increasing the difficulty of
stair traversal—especially when tackling taller steps.

To overcome the pain points of wheeled-legged robots
in complex terrain, we draw inspiration from the contact-
triggered reflexes observed in human gait and propose a
contact-triggered control framework that synergizes feed-
forward instruction learning with reinforcement learning.
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Fig. 1. We have developed a contact-triggered blind climbing control policy
that works for wheeled-legged robots of various tire sizes, enabling them
to conquer a variety of challenging terrains.

By leveraging privileged information within an asymmetric
actor—critic architecture, we develop a biomimetic gait reflex
that enables wheeled-biped robots to ascend stairs with
ease. The key contributions of this work are summarized
as follows:

1) Contact-Triggered RL Task Formula. A contact-
triggered reinforcement learning task formula is pro-
posed, which is applicable to wheeled-legged robots
of various tire sizes, including the small-tired robot
Tronl, to achieve stair-climbing strategies.

2) Feedforward Trajectory Instruction Learning. By
combining instruction learning with reinforcement
learning, the feedforward trajectory is used to teach the
robot when to lift its legs appropriately. This approach
avoids unnecessary exploration and significantly im-
proves learning efficiency.

3) Efficient Traversal of Complex Terrain. This method
enables the Tronl robot to continuously climb 20cm
stairs(Fig. |I|), which is far beyond the tire radius. The
strategy supports both fast movement on flat ground
and motion on complex terrain, enhancing the practical
adaptability of the robot.

II. RELATED WORK
A. RL-Based Legged Locomotion

In the realm of legged locomotion, model-based optimiza-
tion techniques such as Model Predictive Control (MPC) and
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Fig. 2. Overview of our universal contact-triggered blind stair-climbing framework. The overall framework is mainly composed of a state estimator and
an asymmetric actor-critic network. For elastic tires, we introduce a contact force sliding window to simulate more realistic contact. When the contact
force in the xy direction of the foot exceeds a threshold, it triggers the designed feedforward reference trajectory to guide the robot to lift its leg. After
annealing the feedforward trajectory, the method can be zero-shot transferred to the physical robot.

trajectory optimization have long been widely adopted [4].
Nevertheless, the reliance of these methods on accurate
and intricate dynamic models often constrains their robust-
ness and generalization. Recently, model-free reinforcement
learning has risen to prominence, offering an end-to-end
learning paradigm that simultaneously strengthens robustness
and markedly enhances generalization across diverse motion-
control tasks, positioning itself as a powerful alternative to
traditional approaches.

In 2019, Hwangbo et al. [5] introduced reinforcement
learning to legged robot control by proposing a policy condi-
tioned on desired velocity that outputs joint-position targets,
augmented with an actuator network to enhance motor mod-
eling accuracy. Building directly on this seminal framework,
Lee et al. [6] developed a teacher—student architecture that
enables robust traversal of hills, steps, and other challenging
terrains using only on-board proprioception. Siekmann et
al. [7] further demonstrated that an RL policy trained solely
on proprioception can drive the bipedal robot Cassie to
blindly ascend real-world stairs. Leveraging massively GPU-
parallel simulation in Isaac Gym, Rudin et al. [8] trained a
locomotion policy with Proximal Policy Optimization (PPO)
in just 20 minutes that transfers zero-shot to real hardware.
Extending this promising work, Rudin et al. [9] introduced
a task formulation based on positional goals: within a
strict time limit, the robot must reach a target location,
autonomously planning both path and motion to overcome
obstacles and complete navigation without additional motion
priors.

B. Wheeled-Legged Locomotion on Rough Terrain

In complex-terrain locomotion, conventional model-based
methods often hinge on either simple heuristics that dictate
when to walk or when to drive [10], or on fixed, pre-defined
gait sequences [11]. Most policies for legged robots still em-
bed hand-engineered gait patterns [12], [13] or biologically
inspired motion primitives [6], [14].

Bjelonic et al. [15] introduced an online gait generator
driven by leg availability: when the availability score of
any leg drops below a threshold, the leg is automatically
switched to swing while the others continue to drive or
support; a single MPC parameter set suffices for all gaits,
eliminating manual cost-weight tuning. Klemm et al. [16]
leveraged non-smooth trajectory optimization to co-solve
global motion planning and contact switching for stairs, steps
and jumps in one pass, creating a closed perception—control
loop and demonstrating continuous stair climbing on the
Ascento wheeled-leg platform. Lee et al. [17] trained a
quadrupedal wheeled robot with RL to switch on-the-fly
between high-speed wheel driving and legged obstacle clear-
ance in response to commands and terrain, enabling robust
obstacle traversal. Lee et al. [18] further proposed a fully-
integrated end-to-end framework that fuses model-free RL,
privileged learning and hierarchical control, allowing seam-
less transitions between walking and driving for tasks such
as table jumping and stair climbing. Chamorro et al. [3]
demonstrated that a blind RL policy, operating without vision
or localization, enables Ascento to reliably climb 15 cm stairs
by relying solely on a positional objective, binary terrain



flags, and an asymmetric actor-critic architecture.

Although prior work has made significant advances in
the locomotion of wheeled-legged robots over complex ter-
rain, to the best of our knowledge, no universal obstacle-
traversal framework yet exists for bipedal wheeled robots
with arbitrary wheel sizes. In particular, when the robot
is required to surmount high steps without any additional
exteroceptive sensing, existing methods often struggle and
are rarely effective.

I11. METHODOLOGY

As illustrated in Fig. 2] our universal contact-triggered
blind climbing framework is depicted. The following
sections systematically detail the training environment,
reinforcement-learning task formulation, training pipeline,
design of the contact-triggered mechanism, integration of
feedforward instruction learning, and the sim-to-real transfer
strategy with concrete deployment specifics.

A. Learning Environment

1) Simulator: We select Isaac Gym [19] as our train-
ing platform because it is specifically designed for
reinforcement-learning applications and is equipped with
a GPU-accelerated architecture that dramatically increases
agent-training speed thanks to its high degree of parallelism.
In addition, Isaac Gym supports domain randomization tech-
niques [20], which improve the robustness of reinforcement-
learning agents by introducing environmental variations dur-
ing training and thus facilitate the transfer of policies to
the real world. To validate our sim-to-real pipeline, we also
leverage MuJoCo [21] for cross-validation of the trained
policies [22]. MuJoCo is renowned for its high-fidelity sim-
ulation and is widely used to verify reinforcement-learning
policies; a policy that successfully deploys in MuJoCo is
generally expected to transfer seamlessly to the physical
environment.

2) Learning Algorithm: We adopt PPO with an asymmet-
ric actor—critic architecture [23]. This variant of the standard
actor—critic framework employs separate networks for the
actor and the critic, permitting independent updates [24],
[25]. Building upon this, we further introduce a Multi-Layer
Perceptron (MLP) encoder for state estimation [26]. All
training and experiments are conducted on a single NVIDIA
GeForce RTX 4090 GPU with 24 GB of VRAM.

3) Terrains: Our environment is structured as an 8§ m
x 8 m terrain divided into 10 columns: one column of
smooth slope, one of rough slope, six columns of stairs, and
two columns of discrete obstacles, as shown in Fig. @ To
progressively increase the curriculum difficulty, the terrain is
further split into 10 rows. Generally, the greater the diversity
of obstacles encountered during training, the more robust the
resulting policy becomes.

B. Task Formulation

1) State: We adopt an asymmetric actor—critic architec-
ture, so we partition the state into two parts: (i) Observations,
which are accessible to both the Actor and the Critic, and (ii)

Fig. 3. Terrain type. From left to right and top to bottom: smooth slope,
rough slope, discrete obstacles, and stairs.

TABLE I
OBSERVATION & PRIVILEGED INFORMATION

Symbol Description Units Coeff. Size Noise (%)
Observation (Actor / Critic)

(3 Angular velocity rad/s 1.0 3 +2

v Projected gravity - 1.0 3 +5

q Joint positions rad 1.0 6 +1

q Joint velocities rad/s 0.05 8 +50
a;. Last actions rad & rad/s 1.0 8 0
Privileged Information (Critic only)

Vx Linear velocity m/s 2.0 3 -
Ucontact ~ Avg contact forces N 1.0 6 -

Privileged Information, which is revealed to the Critic only
during training. As summarized in Table |I, we explicitly list
the observations available to the actor during both training
and deployment, as well as the privileged information re-
served for the critic at training time. In particular, the term
last actions denotes a composite action vector obtained by
a weighted fusion of the raw actions directly output by the
network and the actions derived from feedforward trajectory.

2) Actions: In this study, the robot’s action space has
a dimension of 8. These actions correspond to the robot’s
individual joints, including both leg and wheel joints. For
the leg joints, the action commands are directly used as
target positions for low-level proportional-derivative (PD)
controllers, i.e., the controllers strive to drive the joints to
these preset positions. For the wheel joints, the action vector
represents target angular velocities; in other words, the joint
motors operate in velocity-control mode, aiming to reach the
specified angular velocities.

3) Rewards: Our task-specific rewards are summarized
in Table [l The reward function is composed of three main
components:

1) Task rewards: including velocity-tracking and foot-



TABLE I
REWARD TERMS AND CLASSIFICATIONS

Reward Formula Coeff.
Task Rewards

Lin. vel tracking x exp(—QO (Vemd.x — Vbase.)c)z) 1.2
Lin. vel tracking y exp(—ZO (Vemd,y — vbase‘y)z) 1.0
Lin. vel tracking x pb Aﬁ" 1.0
Lin. vel tracking y pb %" 0.8
Ang. vel tracking exp(—ZO | @0emd — comse\) 1.0
Ang. vel tracking pb AA—;" 0.5
Tracking target pos  exp(—2||q — Garget||) — 0.2|7 — Grarget | 0.8
Feet air time ¥ min(tyir i, 0.5) Tirst contact,i 2.0
Feet contact number Y, [Hcomacti:stancei - ls}lcomacg#stance,ﬂ} 20
Feet clearance Y i Yswing,i * Ly <hi<hmax 2.0
Style Rewards

Nominal foot position ﬁZi exp[— (“7:,%')2 + %)] 1.0
Default pose Y 19j — 4j defaure| -1.0
Feet distance max (0, dmin — d) + max(0,d — dmax) -10.0
Wheel zero velocity exp(f):je{lﬂ lswing,j 912) 0.5
Same foot x position |xo —x1] -2.0
Base height |Pbase — Mearget| -20.0
Orientation & +§§ -12.0
Regularization Rewards

Wheel spin ¥ ;max (0, 0.8[r6;] — [|Vfoor ;|| — 0.1) -5.0
Opposite base vel max(0, —sgn(vemd) vx) -40.0
Opposite wheel vel Y jeqrry max(0, —sgn(vema) 6;) 2.0
Lin vel z v? -0.3
Ang vel xy a)f + (1)3 -0.01
Torques Y ‘L'J2~ —1x107?
Dof acc Z_;"ﬁ —2.5%x1077
Dof vel Yid; —1x107?
Action rate Yilaj— al;m')2 -0.01
Action smooth ¥(aj—2a" +a7e?)? -0.005
Collision Zi@ﬂpenansed 1p;>1 -50.0
Feet contact forces max(O., F,— Fmax) -5.0
Dof pos limits -Y; max(0, |q; — qu?mit|) 2.0

lifting terms, which ensure the robot moves at the
desired speed and follows the prescribed gait pattern.
2) Style rewards: comprising foot-pose and body-pose
terms, which encourage the robot to maintain a natural
and stable gait.
3) Regularization rewards: used to optimize motion
smoothness and prevent superfluous joint movements.

C. Contact-Triggered Mechanism

The methodology is inspired primarily by [17], with the
core objective of updating the robot’s state and determining
whether each foot should be in the stance or swing phase
based on the contact forces measured at the feet in the
horizontal (xy) plane. We extend this framework with three
key enhancements:

1) Threshold-based Trigger: Once the contact force on
either wheel exceeds the preset threshold, the feedfor-
ward trajectory is instantly triggered, causing that leg
to lift first; the contralateral leg then synchronously
follows, producing a coordinated alternating ascent.

Fig. 5.
larger contact force is chosen to lift.

If both wheels are in contact, the leg with stable contact or the

2) Sliding-Window Filter: Because Isaac Gym is a rigid-
body simulator, wheel-ground contacts can flicker.
Following [3], we apply a three-frame sliding window
to aggregate historical contact states, suppressing noise
while preserving genuine triggers.

3) Wheel-Leg Integration: The trigger mechanism is
coupled with the rolling wheel model, enabling seam-
less transitions between rolling and stepping for
energy-efficient, high-performance obstacle traversal.

The triggering mechanism determines the lifting sequence
by continuously monitoring the contact forces on both feet
in real time. For each foot, the system stores the latest three
frames of force data and designates the contact as stable
contact only if all three frames exceed the threshold.

1) If contact is detected with only one foot, lift solely that
foot (Fig. @).
2) When both feet are in contact (Fig. [5):
i) If one foot has stable contact while the other does
not, the foot with stable contact is lifted first.
ii) If both feet exhibit stable contact, the foot with the
larger contact force is lifted first.

This mechanism ensures the robot can flexibly adapt its
locomotion strategy to actual contact conditions, enabling
more natural and stable motion over complex terrain.

D. Feedforward Instruction Learning

The idea of feedforward instruction learning originates
primarily from [27]. This approach leverages a baseline
gait motion as a feedforward signal, providing the robot
with a clear starting point for locomotion. By integrating
the reward mechanism of reinforcement learning, the robot
can rapidly learn and master diverse locomotion gaits. This
method significantly reduces the exploration required when
starting from a random policy, thereby optimizing the robot’s
learning process for complex action sequences. We adapt
this idea to wheeled-legged robots by injecting feedforward
trajectories solely into the hip-pitch and knee-pitch joints,
with the knee trajectory amplitude set to twice that of the
hip. The composite desired joint position is computed as



TABLE III
DOMAIN RANDOMIZATION

Parameter Range Unit

Payload mass -0.5, 2] kg

Center of mass shift [-3, 3] x[-2, 2] x[-3, 3] cm

Kp Factor 0.8, 1.2] N/rad

Ka Factor 0.8, 1.2] N-s/rad

Friction 0.2, 1.6] -

Restitution 0.0, 1.0] -

Inertia 0.8, 1.2] -

Motor torque 0.8, 1.2] N

IMU offset -1.2, 1.2] -

Default dof pos —0.05, 0.05] N

Step delay 0, 20] ms

Push interval 8 s

Push vel (xy) 1.0 m/s
follows:

a= kfbapolicy + Kfrfeedforward, (D

afeedforward(t> = 05(1 — COS(ZT”I)), T =0.6s. 2)

where a comprises the desired joint actions for robots fed
to the PD controller, and the positive scalars kg,, kg are
tunable weights balancing the policy output a,licy and the
feedforward trajectory dfeedforward-

E. Sim-to-real Transfer

1) Domain Randomization: To achieve zero-shot sim-to-
real transfer, we introduce a broad set of randomization
factors in simulation to model real-world uncertainties and
enhance the policy’s generalization ability, as detailed in
Table [T

2) Annealing: During simulation training, the torques are
computed from a composite action. For sim-to-real deploy-
ment, however, the robot relies solely on the neural-network
policy. We therefore anneal the feedforward component: as
training progresses and the policy converges, the coefficient
kgr is gradually decreased. This annealing continues until kg
reaches zero, at which point the robot’s motion is completely
controlled by the network policy.

IV. EXPERIMENTS
A. Simulation Experiments

To quantify the contribution of each key component in
the proposed CTBC method, we conducted four controlled
ablation experiments under an identical simulation environ-
ment and training setup. All policies started from the same
random seed and were evaluated after 80000 iterations to
ensure fairness. The compared methods are:

o« CTBC (ours): employs both (1) contact-triggered leg-
lifting mechanism and (2) feedforward trajectory.

« CTBC w/o feedforward: retains the contact-triggered
mechanism but removes the feedforward trajectory.

o CTBC w/o contact-trigger: retains the feedforward
trajectory but removes the contact-triggered mechanism.

« CTBC w/o both: removes both components and serves
as the baseline.

SI'[—ourcTBC ! 1
—w/o feedforward 1
—w/o contact trigger |
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Fig. 6. Terrain-level versus training iterations for all ablation variants. Step
height increases from 8 cm to 20 cm while width decreases from 50 cm to
28 cm.

ours(22cm)

Fig. 7. Ablation experiments in simulation

For the training of both CTBC and CTBC w/o feedfor-
ward, we observed that a fore—aft leg motion makes it easier
for the robot to learn the lifting action. Consequently, we
adopted a two-stage training: in stage one, no constraints are
placed on the lateral foot positions; in stage two, we add
a “same foot x position” reward on top of the policy from
stage one to correct the fore—aft leg motion.

We adopt terrain level as the unified metric to measure
the robot’s ability to ascend progressively more challenging
stairs. Difficulty is increased by simultaneously adjusting two
geometric parameters: the step height rises linearly from 8
cm to 20 cm, while the step width decreases linearly from 50
cm to 28 cm, both scaling with terrain level. To validate our
method, we employ a 10 cm feedforward leg-lift trajectory
while using a reward function to constrain the lift height
between 10 cm and 20 cm during simulation training. The
results are presented in Fig. [6]

The ablation results in Fig. show that, without the
feedforward trajectory (CTBC w/o feedforward), the robot’s



Fig. 8.

TABLE IV
SUCCESS RATE (%) ON STAIRS OF INCREASING HEIGHT

Step height (cm)
8 10 12 15 18 20 22

Ablation Experiments

CTBC (our method) 100 100 100 98 96 86 70
CTBC w/o feedforward 96 96 9% 92 80 58 38
CTBC w/o contact-trigger 62 60 56 46 18 2 0
CTBC w/o both 46 34 28 8 4 0 0

leg-lift height when attempting a 22 cm step is markedly
reduced. Removing the contact-triggered mechanism (CTBC
w/o contact-triggered) causes rapid, inefficient stepping mo-
tions that waste energy. When both components are ablated
(CTBC w/o both), the robot is unable to acquire a viable
stair-ascending gait and is limited to clearing 10 cm steps
with markedly low success. This further underscores the
necessity of combining feedforward trajectories and contact-
triggered mechanism for energy-efficient, high-success ob-
stacle traversal.

To intuitively compare how each method affects the robot’s
obstacle-crossing capability, we evaluated 100 robots under
identical domain-randomization settings: stair width was
fixed at 40 cm while height was progressively increased;
success rates are reported in Table [[V] The results highlight
two key findings:

1) Contact-triggered mechanism functions as a gating

Hole-escape and stair-climbing experiments

controller for leg lift initiation. Its removal causes
success rates to fall sharply reaching zero under
feedforward-only control.

2) Feedforward trajectories enhance lift height and dy-
namic stability. When combined with contact trigger-
ing they significantly shorten learning time and raise
terrain-level scores improving 20 cm step success from
58% to 86% and maintaining 70% at 22 cm.

B. Real-World Experiments

We deployed the CTBC policy on the 8-DoF wheeled-
legged robot LimX Dynamics Tronl without any extero-
ceptive sensing. To test its robustness and transferability,
we designed two extreme scenarios: hole escape and stair
climbing, as shown in Fig. [§]

Hole escape: When one wheel drops into a 10 cm-deep
hole, the contact force on the corresponding leg first exceeds
the trigger threshold. The policy immediately executes a leg-
lifting motion, allowing the robot to free itself smoothly.

Stair climbing: Confronted with 16 cm and 20 cm-high
steps, the policy chooses which leg to lift first based on the
relative contact forces when both wheels nearly touch the
step, enabling rapid ascent while maintaining balance.

As Fig. [9] shows, using our CTBC method the biped-
wheeled robot can continuously ascend 20 cm open-gap
stairs, an extremely challenging task. When the contact
force on the left wheel reaches the threshold, the left leg
is triggered to execute a motion close to the feedforward
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trajectory while reinforcement learning adaptively adjusts
the leg’s path. This confirms that the feedforward trajectory
provides effective guidance.

Remarkably, even when the annealing stage is skipped and
the feedforward trajectory is abruptly removed, the robot can
still ascend 20 cm steps stably. This demonstrates that the
network has internalized the leg-lifting policy and exhibits
exceptional generalization.

It is worth noting that the deployed policy uses only a
10 cm-lift feedforward trajectory to surmount obstacles up
to 20 cm. To overcome higher obstacles, one only needs to
increase the feedforward trajectory height and expand the
leg-lift range in the reward function, then re-train the policy.

V. CONCLUSIONS

In conclusion, we propose a contact-triggered, blind stair-
climbing method for biped-wheeled robots that blends feed-
forward instruction learning with reinforcement learning,
enabling the robot to conquer stairs and holes without any ex-
ternal perception. Both simulation and hardware experiments
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demonstrate robust traversal over stairs and holes, confirming
the framework’s terrain-crossing capability. However, the
extended front-rear gait in the first phase limits the rear
leg’s contact opportunities, causing the second-phase policy
to consistently lift the front leg first and become locked
into this early preference. Moreover, the current strategy
remains purely blind and has yet to incorporate external per-
ception, navigation, or trajectory planning. Future work will
therefore focus on eliminating this early bias and adopting
the blind policy as a low-level controller, augmented by a
lightweight vision/LiDAR high-level policy. This hierarchical
“blind—perceptive” architecture will enable real-time terrain
estimation, global navigation, and efficient traversal of stairs
and holes in unknown environments.
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